
 

 

 

Abstract 
 

Sensing the 3D environment of a moving robot is 

essential for collision avoidance. Most 3D sensors produce 

dense depth maps, which are subject to imperfections due 

to various environmental factors. Temporal fusion of depth 

maps is crucial to overcome those. Temporal fusion is 

traditionally done in 3D space with voxel data structures, 

but it can be approached by temporal fusion in image 

space, with potential benefits in reduced memory and 

computational cost for applications like reactive collision 

avoidance for micro air vehicles. In this paper, we present 

an efficient Gaussian Mixture Models based depth map 

fusion approach, introducing an online update scheme for 

dense representations. The environment is modeled from an 

ego-centric point of view, where each pixel is represented 

by a mixture of Gaussian inverse-depth models. 

Consecutive frames are related to each other by 

transformations obtained from visual odometry. This 

approach achieves better accuracy than alternative image 

space depth map fusion techniques at lower computational 

cost. 

 

1. Introduction 

Depth perception is fundamental to most approaches to 

obstacle detection for robotic vehicles, and reliable obstacle 

detection is particularly challenging for small micro air 

vehicles, which are the main application focus here. 

Significant research has been devoted to dense depth 

perception with stereo matching [1]-[3] and active sensors, 

such as Microsoft Kinect, Intel RealSense, and Time-of-

Flight cameras. Despite this, depth map errors are still 

frequent, generally due to the presence of non-Lambertian 

surfaces, textureless regions, changes in lighting that have 

uneven effects on the scene, and inherent range limitations 

of active depth sensors. Obstacle detection errors -- false 

alarms and missed detections -- are inevitable if detection 

is only done with instantaneous frames of depth data. 

Naturally, such errors can be reduced by temporal fusion. 

In the robotics literature, temporal fusion in 3D space with 

occupancy grid or voxel data structures has been a standard 

approach [4]-[6]. However, temporal fusion can also be 

done in image space (Figure 1). This has potential to reduce 

obstacle detection error rates at lower computational cost, 

particularly for reactive navigation in cluttered 

environments. With inverse range as the depth 

parameterization, image space temporal fusion also avoids 

problems with defining appropriate 3D map cell sizes when 

the uncertainty of depth measurements is a strong function 

of the true depth, as is the case for many sensors. Image 

space fusion could also be a useful front end to quickly filter 

inconsistent depth measurements before creating a 3D 

world model. 

The research on depth enhancement has mostly focused 

on spatial enhancement such as joint depth-color filtering 

[7]-[10] and up-scaling [12]-[16]; while temporal 

enhancement has been given much less attention. The large 

literature of simultaneous localization and mapping 

(SLAM) can be considered a way of fusing temporal data 

in order to generate a representation of an environment. 

However, the sparse representation of these techniques is 

not appropriate for path planning and collision avoidance 

that require denser representation [17]-[18]. The multi-view 

3D extraction techniques can be adapted to temporal 

domain by assigning consecutive frames as multiple 

observations of a scene. This approach can provide 

temporal consistency while demanding high computational 

power due to use of multiple 3d warping.   

In this paper, we propose an efficient depth data fusion 

technique to provide temporally consistent models for path 

planning and collision avoidance for ground vehicles or 

micro air vehicles. Our solution is inspired by a background 

modeling framework for surveillance image change 

detection, where each pixel is represented as a mixture of 

Gaussian distributions. This compact depth map 

representation is propagated between frames by forward 

warping, using platform ego motion estimates, and is 

updated at each time step using newly observed depth maps. 

Assuming the rigid scene with low level of moving objects, 

depth maps can be provided by an active sensor, stereo 

matching or structure from motion. 
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Figure 1: Top to bottom: gray-scale left image, initial disparity 

map via Semi Global Matching, temporally fused disparity map. 

Temporal fusion compensates flickers, un-reliable disparity 

estimates and empty pixels for denser representation of the 

surrounding. 

 

The remainder of the paper is organized as follows. The 

next section summarizes prior work related to temporal 

fusion. Section 3 presents the details of the proposed 

approach, followed by experimental results and comparison 

to other methods in Section 4. Finally, we discuss 

conclusions and potential future directions in Section 5. 

2. Related Work 

Temporal fusion of depth data can be classified into three 

categories. The first group integrates temporal consistency 

in the cost function during the extraction of 3D. [19] 

exploits Markov Random Fields constructed on multiple 

consecutive frames. The independently extracted depth 

maps are merged through bundle optimization resulting in 

high computational complexity. In [20] monocular dense 

reconstruction is proposed by describing each pixel as a 

parametric model to extract depth maps from a multi-view 

stereo point of view. The approach presented in [20] differs 

from traditional multi-view stereo techniques by 

introducing online and sequentially updated depth maps. In 

[21]-[23], local edge-aware filters over temporally 

aggregated cost functions are utilized to determine the 

depth maps. The SLAM literature, while using sparse 

representation, exploits online depth updates especially in 

the key frames. In [24][25], the sparse depth measurements 

are modeled as a weighted sum of Gaussian and uniform 

distributions, and the depth search is performed along a 

restricted region in the epipolar line. On the other hand, in 

[26] a simple Gaussian model is utilized to model depth 

measurements and the depth search is limited within the 

standard deviation of the prior hypothesis. The depth update 

is achieved by multiplications of two distributions as in the 

Kalman filter update step. This approach is extended to 

large scale direct SLAM with the addition of stereo cameras 

in [27], where stereo matching is exploited to adjust the 

monocular scale and increase the number of reliable points. 

In SLAM techniques, occluded pixels are eliminated from 

the model according to the variance of the depth values. 

The second group relies on the utilization of 3D models, 

such as voxels or surfaces, to fuse depth data. KinectFusion 

[28] gets the depth maps from Kinect camera with active 

sensors and these maps are merged through signed distance 

functions to efficiently represent the 3D surfaces. In RGB-

D Fusion [29], the depth and color data captured from 

RGB-D sensors are merged to increase accuracy of the 3D 

models. These approaches exploit high power GPUs to 

meet high precision and real-time requirements. They are 

generally applicable to indoor 3D model reconstruction that 

limits the scope of path planning and collision avoidance. 

In [31], the raw depth values gathered from active sensors 

are improved via median filter among nearby frames in a 

time window. [30] models depth on rays in occupancy map 

as a mixture model. 

The final group involves techniques that approach the 

temporal fusion problem in a post-processing or filtering 

framework. [32] proposes a visibility based approach to 

fuse multiple depth maps into a single depth map. This 

method requires multiple 3D warping and depth ordering 

steps for each frame that increases the memory and 

computation requirement. The resulting depth maps still 

include noise, since visibility is constrained for each frame 

independently without any global regularization. In [33], 

depth maps are integrated into a volumetric occupancy grid. 

Two level height maps are exploited to constrain the motion 

of a robot in an indoor environment. The regularization is 

achieved through anisotropic total variation with reduced 

dimension due to indoor constraints. In [34], depth 

estimates of consecutive frames are merged by a 

probabilistically motivated 3D filtering approach. Each 

frame receives multiple depth candidates from the 

preceding frames and the depth assignment is achieved by 

maximization over the local histogram of mean-shift 

filtered depth values. This merging step is followed by 

photometric edge-aware filtering and mesh generation to 

fill the holes in the depth maps. [35] utilizes a median filter 

over consecutive frames to smooth out the noisy 

measurements then averages the depth values according to 

the motion estimation between color images and inter-

frame differences. In [16], optical flow and patch similarity 

measures are exploited to up-scale low resolution ToF 

cameras w.r.t. high resolution color images and provide 

temporal consistency. [36] projects multiple depth 

hypotheses to a reference view and estimates probability 

density function of depth measurements via projection 

uncertainties. The depth candidate with highest probability 



 

 

is assigned to the corresponding pixel. Recently, [37] 

proposes a novel total generalized variation technique to 

fuse depth maps from multiple frames. The optimization is 

executed on a 2.5 D surface obtained by back-projecting the 

depth maps.   

It is important to note that using multiple 3D warpings 

(back-projection and projection) or optical flow are the two 

alternatives for data registration for the techniques that 

consider fusion as a filtering framework. This is a limiting 

factor in terms of memory and computational complexity 

for onboard processing. Even the median filter, a common 

approach to remove outliers, requires high computation. In 

addition, multi-view techniques suffer from holes created 

during forward mapping as the motion between frames 

increases. 

In order to provide temporally consistent disparity maps 

and denser representation, we propose a sequential depth 

map filtering approach where each pixel is considered as a 

mixture of Gaussian models. We consider the problem from 

an egocentric point of view by only considering the current 

field of view and ignoring the previously visited out-of-

view regions. This compact representation yields an 

efficient solution to address the trade-off between 

computational complexity and accuracy. GMMs are 

projected onto the most recent frame with respect to pose 

estimates gathered from a SLAM framework. Hence, only 

the pose change between the recent two frames is exploited, 

which reduces the required number of 3D warpings 

tremendously. The Gaussian models are updated efficiently 

with the current depth map observation. This approach 

unites and extends the efficiency of sparse depth model 

updates in the SLAM literature with dense representation of 

multi-view stereo. The use of Gaussian mixtures enables 

modeling partially occluded pixels due to ego-motion or 

independently moving objects. 

3. GMM based Temporal Fusion 

Use of Gaussian Mixture Models (GMM) is a common 

technique to perform background/foreground segmentation 

for detecting moving objects in surveillance video [38]. 

This approach combines sequential observations of a pixel 

(intensity) in a compact representation. The same idea can 

be extended to represent the environment on a moving 

platform; we address this formulation here. This is closely 

related, but not identical to, formulations that would result 

from a strict recursive state estimation derivation. We show 

that the GMM-inspired formulation is an advance over 

previous work, and expect to continue to examine 

variations in ongoing work. 

3D sensors produce depth maps in the image domain, and 

are subject to errors and missing data due to many causes. 

Even where depth estimates are approximately correct, for 

many sensors the error in estimated 3D coordinates is a 

strong function of the true range; for example, this error is 

quadratic in range for triangulation-based sensors and 

nonlinear in range for phase-based time-of-flight active 

optical range sensors. This nonlinear error characteristic 

complicates the definition and maintenance of 3D grid-

based world models. Similarly, most 3D sensors have 

angular instantaneous fields of view (IFOV), e.g. the 

projected cone imaged by one pixel, which also leads to 

sampling issues with 3D grid-based world models. 

Representing uncertainty in inverse depth in image space 

avoids these problems. However, gross errors from several 

sources can lead to ambiguous depth estimation given time 

sequences of observations; the GMM formulation offers a 

compact, efficient approach to overcome this ambiguity. 

3.1. Notation  

Let �⃗� = (𝑢, 𝑣, 𝑑) be the triplet defining pixel position 

(u,v), and the disparity value, d, in the image domain. We 

assume that, at a time instant t, x has a mixture of K 

Gaussian distributions as follows: 

 

𝑃(�⃗�𝑡|𝑋𝑇) = ∑ 𝑤𝑚𝑁(�⃗�; µ⃗⃗𝑚, �⃗�𝑚)
𝐾

𝑚=1
   (1) 

 

where µ⃗⃗’s are the mean and �⃗�’s are the variance estimates 

of the �⃗� triplet and 𝑋𝑇 is the set of observations within time 

frame of T from the image sequence. In typical GMM 

applications, each mode has a weighting factor that affects 

the state of the pixel. In the depth integration version of this 

model, we exploit an occurrence counter on each mode and 

decide the current state w.r.t. occurrence and variance 

estimates. The variances of u and v are ignored, for the sake 

of efficiency, since these positions are only utilized to map 

points to the following frames without suffering 

quantization noise. Hence the variance of positions does not 

have a direct effect on the disparity values. Therefore, 

GMM is modified as follows: 

 

  𝑃(�⃗�𝑡|𝑋𝑇) = ∑ 𝑊(𝑂𝑚, 𝜎𝑚)𝑁(�⃗�𝑡; µ⃗⃗𝑚, 𝜎𝑚)
𝐾

𝑚=1
 (2) 

 

where Om corresponds to the number of frames that the 

corresponding mode m is observed and W is a weighting 

function that defines the contribution of the corresponding 

mode w.r.t. occurrence and variance. In this study W is 

chosen to be an impulse function centered at the mode with 

lowest variance and sufficiently high occurrence count. 

This choice provides crisp disparity refinement and handles 

the mixing of background and foreground hypotheses.  

 Visual SLAM pose estimates between consecutive 

frames provide the mapping of a triplet in frame t-1, to the 

following frame, t, as; 

 

  �⃗�𝑡
ℎ = 𝛩𝑡−1

𝑡 (�⃗�𝑡−1) �⃗�𝑡−1      (3) 

 

where 𝛩 𝑡−1
𝑡 (�⃗�𝑡−1) is the 4x4 transformation matrix that 



 

 

maps �⃗�𝑡−1 to the following frame, and �⃗�𝑡
ℎ is the 

hypothesized model. The mapping between two 

consecutive frames requires an inverse projection from the 

image coordinates to 3D, then a transformation based on the 

camera motion and a re-projection.  

3.2. GM Modeling 

GMM based temporal fusion involves initialization, 

forward mapping GMM update, and disparity assignment 

steps. Initialization create a single mode for each pixel (x,y) 

as follows: 

 

𝑁(�⃗�; µ⃗⃗0, 𝜎0): {
µ⃗⃗0 = (𝑥, 𝑦, 𝑑)
𝜎0 = 𝜎𝑖𝑛𝑖𝑡        
𝑂0 = 1            

     (4) 

 

In (4), 𝜎𝑖𝑛𝑖𝑡  is set to a high value (i.e., 6), and d is the 

observed disparity map at the initial frame. The initial high 

standard deviation indicates that the disparity value that is 

observed for first time is not trusted. The forward mapping 

step transfers models from the previous frame to the current 

frame and sets the valid disparity hypotheses for each pixel. 

Then, the update step fuses the temporally aggregated 

models with observation from the current disparity map. 

Finally, the assignment step outputs a single disparity 

estimate for each pixel by assessing the mixture 

distributions at each pixel. 

 

3.2.1 Forward Mapping 

 

At each time step, GMMs from the previous time step are 

mapped to the current time according to (3). This forward 

mapping is provided for all of the models 

of a pixel. Therefore, the maximum number of 3D warpings 

is limited by the pre-defined number of models in the 

mixture, K. Forward mapping may introduce some holes 

due to quantization and occlusions as a result of the motion 

of the vehicle. The size of the holes is a function of the 

vehicle motion between frames; for large motions, some 

fundamental tools of forward mapping, such as dilation-

erosion and Z-buffering, are not applicable since they are 

utilized when the source pixels have one disparity at a time. 

In this case, each pixel has a different number of depth 

models, which results in multiple depth models in the target 

frame. Thus, there is not a specific disparity map for 

applying any post-processing. Moreover, GMM depth 

models are considered to store partially occluded pixels 

along then temporal axis, hence exploiting a Z-buffer is not 

attractive, because it eliminates the occluded disparity 

candidates.   

This problem is handled by allowing the mapped triplets 

to influence neighboring pixels in the target frame. Since 

each pixel gets contributions from the neighboring pixels, 

this increases the number of depth hypothesis. The number 

of possible hypotheses is limited by the predefined number 

of GMMs, K. Hence, a reduction step is used that averages 

triplets whose disparity hypothesis are closer than a 

threshold, i.e. Δd=3. The averaging is performed on all 

parameters of GMMs as follows: 

 

      𝑁(�⃗�ℎ ; µ⃗⃗𝑚, 𝜎𝑚) =
1

𝑃
∑ 𝑁(�⃗�𝑠

ℎ; µ⃗⃗𝑠, 𝜎𝑠)𝑠∈𝑆    (5) 

 

where 𝑆 = {�⃗�𝑠
ℎ: |µ⃗⃗𝑚 − µ⃗⃗𝑠| < ∆𝑑} is the set of neighbor 

hypotheses and 𝑝 = |𝑆| is the size of the set. The reduction 

is finalized by picking the best K models according to their 

standard deviations. This approach fills quantization holes, 

but it may grow object boundaries. This growing is handled 

by the rejection step during update of GMMs, which is 

explained in the following sub-section.  

    

3.2.2 GMM Update 

 

As a new frame is observed (x,y,d), a comparison is 

conducted between the current disparity map, �⃗�(𝑑), and the 

mapped GMMs from the previous frame as: 

 

𝑀 = argmax
𝑚∈[1,𝐾𝑥]

|𝑑 − µ⃗⃗𝑚(𝑑)|     (6) 

 In (6), the mode with closest disparity model is 

determined among the Kx prior models of the corresponding 

triplet. If the best match has disparity distance below a 

specified threshold, Td, then it is considered to be a proper 

fit. In that case the update of GMMs, a common way for 

background update [38], is achieved as follows:           

 

𝜎𝑀
2 = 𝛼𝜎𝑀

2 + (1 − 𝛼)|𝑑 − µ⃗⃗𝑀(𝑑)|2

 µ⃗⃗𝑀 = 𝛼µ⃗⃗𝑀 + (1 − 𝛼)�⃗�
𝑂𝑀 = 𝑂𝑀 + 1

𝜎𝑚
2 = 𝜎𝑚

2 + 𝑉0

𝑂𝑚 = 𝑂𝑚 − 1

𝑚 ∈ [1, 𝐾𝑥]    (7) 

 

where the matched mode, M, is updated by the current 

observation. The remaining modes are penalized by V0 

(=0.5) since they do not have any observations. In addition, 

the occurrence counter is incremented for the matched 

mode, M, and decremented for the mismatched modes. The 

update rate, α, is fixed at a value that balances rapid 

convergence with smoothing over many frames. 

Experiments show that this update process improves 

performance over prior work at lower computational cost; 

future work will examine alternate probabilistic 

foundations of the update formulation. 

If there is no fit, all GMMs of the corresponding pixel are 

penalized and a new mode is included according to (4). If 

the number of modes is at the limit, the weakest mode 

(w.r.t. disparity variance) is replaced with the current 

observation. There may be no observation coming from the 

current disparity map; in that case, the models are not 



 

 

updated while the occurrence count is decreased as a 

forgetting factor. In order to adapt to temporal changes and 

preserve efficiency, modes with high occurrence counts but 

large disparity variances are rejected. These correspond to 

unreliable modes, since the variances have not decreased 

despite high occurrence. 

 

3.2.3   Disparity Assignment 

 

 For motion planning, each pixel is assigned a final 

disparity estimate according to the occurrence count and the 

variance of the GMMs. To assign a valid disparity value, 

the mode that fits the most recently observed disparity must 

have an occurrence count larger than a threshold (i.e. 𝑂𝑚 >
3). This rejects temporal flickers among consecutive 

frames. Also, the variance estimate of the model should also 

be below a threshold, which enforces the assignment to be 

reliable (𝜎𝑚 < 0.25𝜎𝑖𝑛𝑖𝑡). The same conditions are valid 

for the empty pixels or when there is no match with the prior 

GMMs in the current disparity map. In this case, the best 

model having least disparity variance is assigned to the 

corresponding pixel as long as the occurrence and variance 

satisfy the conditions.  

3.3. Computational Analysis 

Before describing experimental results, we give a brief 

analysis of the computational complexity of the proposed 

fusion technique. Common multi-view techniques where 

fusion is considered as a filtering problem are considered as 

a baseline for comparison. Neglecting the post-processing 

steps and additional optimizations, the comparison is based 

on the required number of forward mappings and the 

memory requirement to hold multiple hypotheses. This 

gives a general idea of the complexity without getting into 

details of additional processes. In the multi-view approach, 

the number of 3D warpings is at least equal to the width of 

the time window, given as T, and the memory requirement 

is TxWxH to store all possible contributions from the 

previous frames. On the other hand, the proposed approach 

requires K 3D mappings and 5K of image memory (three 

for triplet means (u,v,d), one for occurrence count and one 

for disparity variance). Single 3D mapping as given in (3) 

involves two projections in addition to one transformation 

in 3D coordinates. In the stereo camera setup, the 

projections are simplified by basic arithmetic operations 

over the camera calibration parameters.  

In general, 10 to 20 frames are utilized during multi-view 

depth fusion [34][36][37], while for GMM based fusion one 

to three GMMs are sufficient to provide a compact 

representation of the previous depth maps. Hence, there is 

an obvious decrease in the number of 3D forward 

mappings, which is a time-consuming step especially for on 

board processing. On the other hand, the memory 

requirement remains on the same scale. 

4. Experimental Results 

To evaluate the performance of the proposed approach, 

we utilize the well-known KITTI stereo benchmark [3]. 

This provides an excellent framework to evaluate stereo 

matching and multi-view extensions, since it contains sets 

of 20 consecutive test frames, with ground truth at 11th 

frame; hence, 10 frames are utilized as the time window for 

temporal fusion.  

In the first set of experiments, comparative results are 

given with state-of-the-art techniques in terms of 

computation time and depth map accuracy. We fixed the 

number of modes at K=3 and neighbor set as S:3x3 for the 

proposed approach, which provides a good tradeoff 

between computation and accuracy. In the second set of 

experiments, we analyze the performance of GMM based 

fusion with respect to number of modes in the mixture and 

different visual odometry poses gathered from three 

different approaches [39]-[41]. 

Throughout the experiments, two different stereo 

matching algorithms (Semi-Global Matching (SGM) [42] 

and Efficient Large Scale Stereo Matching (ELAS) [43]) 

are exploited to observe the enhancement after temporal 

fusion. Both of the matching techniques yield sub-pixel 

estimates, so the disparity values after temporal fusion also 

have sub-pixel accuracy. The parameters for the stereo 

matching algorithms are set according to the parameter set 

given KITTI evaluation benchmark. The evaluation is 

based on the mean disparity error and the percentage of 

erroneous pixels with disparity error larger than a threshold, 

i.e., ∆𝑑 > 3.  

4.1. Comparison with State of the art 

We selected TGV [37], PFuse [36], DSM [34] and the 

common median filter as the techniques to compare. In all 

these techniques, the problem is considered in a filtering 

framework, as in our approach, where fusion is conducted 

with estimated disparity maps and camera poses estimated 

by VO. TGV is a complex optimization framework with 

high ranking on the KITTI test benchmark, thus it is 

considered as state-of-the-art in terms of accuracy. Sharing 

the same experimental setup, we quote published results of 

TGV and report results of PFuse, DSM and median filter 

obtained by our implementation. Post-processing steps of 

these algorithms are not exploited in order to evaluate the 

fusion stage only. The tests are conducted on the KITTI 

stereo 2012 training set, including 194 different sequences 

with average resolution of 1250x350. This set has mostly 

static scenes, compared to the 2015 release of the 

benchmark that has independently moving objects at each 

frame. Thus, the KITTI 2012 set provides a more focused 

evaluation of temporal fusion.   

In this set-up, visual odometry pose estimates are 

obtained via [39]. The performances of the temporal fusion 

algorithms over the disparity maps obtained by SGM and 



 

 

ELAS are given in Table 1 and Table 2, respectively. In 

both cases, the best average disparity error (D-avg) and best 

outlier percentage (Out-3%) are achieved by the proposed 

GMM-based fusion approach with K=3. Performance of 

temporal fusion is generally less with ELAS than with 

SGM, because SGM results start out worse. For empty 

pixels with no disparity assignment, background filling is 

performed before the evaluation. The proposed technique 

gives better error percentages than the other methods. 

PFuse and DSM perform poorly compared to even median 

filtering due to fast motion of the vehicle. DSM is designed 

for images captured with down looking cameras on airborne 

platforms and PFuse for parking assistance; thus, both 

require small disparity changes between consecutive 

frames.  

Apart from the accuracy, density of the proposed 

approach is lower due to hard constraints (introduced in 

section 3.2.3) to reduce the temporal flickering effect and 

increase reliability. Completeness of the fused disparity 

maps could increase by decreasing the thresholds; however, 

in that case temporal consistency would slightly decrease. 

We set the thresholds such that a minimum number of 

outliers is observed. In Figure 2 and Figure 3, disparity 

maps of some selected scenes are illustrated, which support 

the results presented in Table 1 and Table 2. We cannot 

show results of TGV [37], since they are not available. 

However, we can assume they are visually similar to the 

proposed approach given the similar the numerical results. 

Especially for cases where standard stereo matching fails 

due to change of lighting and reflection, temporal fusion 

handles this and propagates the previous reliable disparity 

hypotheses to the unreliable pixels. Outlier spikes in the 

disparity maps are minimal in the proposed approach, 

whereas we observe more spikes in PFuse, DSM, and 

Median, especially in Figure 3. In general, the simpler and 

lower cost the base stereo algorithm, the more benefit we 

expect will be obtained from temporal fusion; thus, 

inexpensive local block matching stereo algorithms should 

benefit even more. 

The proposed approach preserves crisp objects 

boundaries such as the traffic sign and the pole; on the other 

hand, objects are enlarged by the other techniques. On the 

traffic sign in Figure 2, the background is mixed for the 

remaining techniques, while the proposed approach 

preserves the valid disparity estimate. This is achieved by 

the accumulation of recent observations close to camera 

through neighbor influence that removes holes in the 

disparity maps. 

The average execution times are given in Table 3. The 

timing for TGV-1 is copied from the related paper, which 

used GPU implementation for a significant speed-up. The 

remaining techniques were tested on a 3.4 GHz i7-3770 

CPU. For the rest of the algorithms, the same forward 

warping tool is exploited to be fair with no additional 

optimizations. A 3x3 closing operation is implemented for 

Table 1: The average disparity error and out-3 percentage 

performances of the temporal fusion techniques over SGM  

Err > 3 D-avg Out-3 % Density% 

SGM [42] 2.9 13.1 76 

TGV [37] 2.0 8.6 100 

PFuse[36] 2.5 11.5 93 

DSM [34] 2.6 12.0 97 

Median 2.1 9.1 99 

Proposed 1.8 7.9 94 

 
Table 2: The average disparity error and out-3 percentage 

performances of the temporal fusion techniques over ELAS 

Err > 3 D-avg Out-3 % Density % 

ELAS [43] 1.7 9.8 76 

TGV [37] 1.4 7.3 100 

PFuse [36] 1.8 8.9 92 

DSM [34] 1.9 9.5 99 

Median 1.5 7.2 99 

Proposed 1.3 7.1 92 

 

PFuse, DSM and Median Filter to fill the holes to an 

extent in order to increase their performance. The timings 

in Table 3 can be further improved with additional 

optimization for onboard processing. In Table 3, efficiency 

of the proposed approach is clear and is a result of compact 

representation, decreased number of 3D warping steps and 

simple update steps. The processing time for PFuse and 

DSM are high; PFuse exploits additional 3D warping to test 

different disparity hypotheses on multiple images, while 

DSM uses an iterative mean-shift approach that is time 

consuming. The accuracy of temporal fusion improves as 

longer time windows are exploited. In this case, the 

proposed approach does not need additional computation, 

due to the online frame-at-a-time update, while the rest of 

the multi-view approaches require further computation.  

In order to understand the effect of temporal fusion in 

detail, the percentages of pixels with different disparity 

errors are illustrated in Figure 4. In these plots, each color 

indicates the contribution of the pixels of an error region to 

the average error. For example, after proposed temporal 

fusion over SGM disparity maps, the pixels with 2 > ∆𝑑 >
1 (indicated by blue color) have the contribution of almost 

60% to the average error 1.8. Temporal fusion specifically 

decreases the number of pixels with high disparity errors. 

In the meantime, these pixels are shifted to lower error 

bands as observed by the enlarged percentage of pixels with 

2 > ∆𝑑 > 1. The refinement is more visible if the initial 

disparity maps have higher error rates. The error sensitivity 

may change depending on the application, so providing a 

complete error distribution yields much clear understanding 

of the effects of temporal fusion.  

 



 

 

 
Figure 2: Top to bottom: left-right stereo pair, initial disparity 

maps (SGM left, ELAS right), proposed approach, PFuse [36], 

DSM [34]and Median Filter.  

 

 
Figure 3: Top to bottom: left-right stereo pair, initial disparity 

maps (SGM left, ELAS right), proposed approach, PFuse [36], 

DSM [34] and Median Filter. 

 
Table 3: The execution times of the algorithms 

 Time (sec) Platform 

TGV [37] 70 GPU 

PFuse [36] 23 CPU 

DSM [34] 25 CPU 

Median 1.3 CPU 

Proposed 0.4 CPU 

 

 
Figure 4: Distribution of errors according to different bounds.  

4.2. Effects of parameters and VO  

The most critical parameter for GMM based fusion is the 

number of GMMs, since that affects the model complexity 

and computation time. We extracted distributions of the 

number of GMMs for two long stereo sequences with 

10000 frames from the KITTI odometry dataset [3], as well 

as the dataset used for stereo evaluation (2134 frames). On 

the average, the mode distributions are given in Table 4. 

The distribution of models is related to the complexity of 

the dataset. The odometry sequence involves more moving 

objects compared to stereo benchmark sequences, so the 

percentage of side modes is higher than the stereo 

benchmark set. Since the first three modes cover 90% of the 

distribution for the stereo benchmark, that is a good choice 

for algorithm parameter. 

The distribution of erroneous pixels with different error 

thresholds is given in Table 5 for the proposed approach 

with three different limiting mode numbers over SGM [42] 

and ELAS [43] separated by slash respectively. This error 

representation yields a comprehensive understanding of the 

distribution of error. Performance is very similar for all 

three cases. One of the causes of this small performance 

difference is that the data set has static scenes. 

In order to test the robustness of the proposed approach, 

the same experiments were conducted with three different 

VO algorithms [39]-[41] for 3-mode GMM fusion. Table 6 

shows the error distributions as the percentage of pixels 

with quantized errors. The VO poses provided by [40] are 

improved in [39] which is a newer study. [41] has the worst 

VO pose estimates among the three, which are used in TGV 

[37]. According to the results in Table 6, the accuracy of 

VO poses affects the performance of temporal refinement, 

as expected. However, all VO poses result in same average 

disparity error and the differences for high error 



 

 

percentages are almost insignificant. On the other hand, the 

difference for low error pixel rates is significant. These 

show that the proposed approach is robust against different 

visual odometry accuracy in terms of average disparity 

error as long as VO performs well enough to relate 

consecutive frames.  

 
Table 4: Mode distribution over different stereo sequences 

Mode  

Distribution 

1 

mode 

2 

mode 

3 

mode 

4 

mode 

5 

mode     

Odometry 52% 23% 13% 7% 5% 

Stereo  64% 18% 9% 5% 4% 

 
Table 5: The percentages of error for different thresholds by use 

of different number of GMM modes over SGM/ELAS 

% [42]/[43] 1-mode 2-mode 3-mode 

Out-1 27.1/25.8 30.3/24 30/23.9 29.9/23.8 

Out-2 16.3/13.5 12.5/11 12/10.8 12.0/10.7 

Out-3  13.1/9.8 8.3/7.4 7.9/7.1 7.9/7.1 

Out-4 11.3/7.8 6.6/5.6 6.2/5.4 6.2/5.4 

Out-5 10.0/6.5 5.7/4.6 5.3/4.5 5.3/4.7 

Out-6 9.1/5.6 4.9/3.9 4.6/3.8 4.6/3.7 

Davg 2.9/1.7 1.9/1.4 1.8/1.3 1.8/1.3 

 
Table 6: The percentages of error for different thresholds for 

GMM based fusion, K=3, w.r.t three different VO poses 

% [42]/[43] [39] [40] [41] 

Out-1 27.1/25.8 29.9/24 30.2/24.3 30.7/24.7 

Out-2 16.3/13.5 12.0/11 12.8/11.3 13.2/11.7 

Out-3  13.1/9.8 7.9/7.1 8.5/7.6 8.7/7.9 

Out-4 11.3/7.8 6.2/5.4 6.6/5.9 6.8/6.0 

Out-5 10.0/6.5 5.3/4.4 5.6/4.8 5.7/4.9 

Out-6 9.1/5.6 4.6/3.7 4.9/4.1 4.9/4.2 

Davg 2.9/1.7 1.8/1.3 1.8/1.4 1.8/1.4 

5. Conclusions 

In this paper, we propose an efficient GMM inspired 

approach to fuse disparity maps temporally. Each pixel is 

represented by mixture of multiple models accumulated 

through previous observations. This compact 

representation is mapped to the following frame via the 3D 

transformation between camera poses. The models are 

utilized to refine the recent disparity observations and 

updated for the next frames. The online update approach 

fuses temporal data efficiently and does not require any 

time window. According to comprehensive experiments, 

the proposed approach is an efficient alternative for the 

state-of-the-art with far lower computational complexity 

and competitive accuracy. The proposed approach yields 

temporally consistent, flicker-free disparity maps with 

fewer errors and more complete representation, which are 

vital for collision avoidance. Use of multiple models may 

also enable the detection and segmentation of 

independently moving objects in complex environments, 

which remains as a future direction of this study.     
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